Optimizing core-shell nanoparticle catalysts with a genetic algorithm.
نویسندگان
چکیده
A genetic algorithm is used with density functional theory to investigate the catalytic properties of 38- and 79-atom bimetallic core-shell nanoparticles for the oxygen reduction reaction. Each particle is represented by a two-gene chromosome that identifies its core and shell metals. The fitness of each particle is specified by how close the d-band level of the shell is to that of the Pt(111) surface, a catalyst known to be effective for oxygen reduction. The genetic algorithm starts by creating an initial population of random core-shell particles. The fittest particles are then bred and mutated to replace the least-fit particles in the population and form successive generations. The genetic algorithm iteratively refines the population of candidate catalysts more efficiently than Monte Carlo or random sampling, and we demonstrate how the average energy of the surface d-band can be tuned to that of Pt(111) by varying the core and shell metals. The binding of oxygen is a more direct measure of catalytic activity and is used to further investigate the fittest particles found by the genetic algorithm. The oxygen binding energy is found to vary linearly with the d-band level for particles with the same shell metal, but there is considerable variation in the trend across different shells. Several particles with oxygen binding energies similar to Pt(111) have already been investigated experimentally and found to be active for oxygen reduction. In this work, many other candidates are identified.
منابع مشابه
Computational Design of Core/Shell Nanoparticles for Oxygen Reduction Reactions.
A computational strategy to design core/shell nanoparticle catalysts for oxygen reduction reactions (ORRs) is proposed based on multiscale modeling. Using a quantum mechanics/molecular mechanics (QM/MM) coupling method, we have studied the ORR on Pt-Cu core/shell nanoparticles with the size ranging from 3 to 8 nm. We have calculated the oxygen adsorption energy on the nanoparticle surface (a de...
متن کاملComputational Design of Alloy-Core@Shell Metal Nanoparticle Catalysts
The alloy-core@shell nanoparticle structure combines the advantages of a robust noble-metal shell and a tunable alloy-core composition. In this study we demonstrate a set of linear correlations between the binding of adsorbates to the shell and the alloy-core composition, which are general across a range of nanoparticle compositions, size, and adsorbate molecules. This systematic tunability all...
متن کاملDealloyed Pt-based Core-Shell Oxygen Reduction Electrocatalysts
Dealloyed Pt core-shell nanoparticles constitute the most active and stable bimetallic oxygen reduction catalysts for low-temperature fuel cells. Here, we review recent advances on their preparation, structural characterization, and electrocatalytic performance. Starting with bimetallic metal overlayer model systems, for which we illustrate fundamental principles of the ORR activity enhancement...
متن کاملReaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles.
Heterogeneous catalysts that contain bimetallic nanoparticles may undergo segregation of the metals, driven by oxidizing and reducing environments. The structure and composition of core-shell Rh(0.5)Pd(0.5) and Pt(0.5)Pd(0.5) nanoparticle catalysts were studied in situ, during oxidizing, reducing, and catalytic reactions involving NO, O2, CO, and H2 by x-ray photoelectron spectroscopy at near-a...
متن کاملComputational screening of core@shell nanoparticles for the hydrogen evolution and oxygen reduction reactions.
Using density functional theory calculations, a set of candidate nanoparticle catalysts are identified based on reactivity descriptors and segregation energies for the oxygen reduction and hydrogen evolution reactions. Trends in the data were identified by screening over 700 core@shell 2 nm transition metal nanoparticles for each reaction. High activity was found for nanoparticles with noble me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 131 23 شماره
صفحات -
تاریخ انتشار 2009